|2|{\displaystyle |2|} is read as “the absolute value of 2. “[3] X Research source

|−5|=5{\displaystyle |-5|=5}

Problem:|(−4∗5)+3−2|{\displaystyle |(-4*5)+3-2|} Simplify inside parenthesis: |(−20)+3−2|{\displaystyle |(-20)+3-2|} Add and Subtract:|−19|{\displaystyle |-19|} Make everything inside the absolute value positive: |19|{\displaystyle |19|} Final Answer: 19[6] X Research source

Problem:1+2+|4−7|5∗|−3∗2|{\displaystyle {\frac {1+2+|4-7|}{5*|-32|}}} Perform the order of operations inside and outside the absolute value:3+|−3|5∗|−6|{\displaystyle {\frac {3+|-3|}{5|-6|}}} Take the absolute values:3+(3)5∗(6){\displaystyle {\frac {3+(3)}{5*(6)}}} Order of operations:630{\displaystyle {\frac {6}{30}}} Simplify to final answer: 15{\displaystyle {\frac {1}{5}}}[7] X Research source

|12|{\displaystyle |12|} = 12{\displaystyle 12} |−24|{\displaystyle |-24|} = 24{\displaystyle 24} |3+2−11+5−6|{\displaystyle |3+2-11+5-6|} = 7{\displaystyle 7}

Problem:|3−4i|{\displaystyle |3-4i|} Note: If you see the expression −1{\displaystyle {\sqrt {-1}}}, you can replace it with “i. " The square root of -1 is an imaginary number, known as i. |i|=1{\displaystyle |i|=1}

|1+6i|{\displaystyle |1+6i|} = (1, 6) |2−i|{\displaystyle |2-i|} = (2, -1) |6i−8|{\displaystyle |6i-8|} = (-8, 6)[8] X Research source

Coefficients: (3, -4) Distance formula: 32+(−4)2{\displaystyle {\sqrt {3^{2}+(-4)^{2}}}} Square the coefficients: ’ 9+16{\displaystyle {\sqrt {9+16}}} Note: Review the distance formula if you’re confused. Note now squaring both numbers makes them positive, effectively taking absolute value for you. [9] X Research source

Coefficients: (3, -4) Distance formula: 32+(−4)2{\displaystyle {\sqrt {3^{2}+(-4)^{2}}}} Square the coefficients: 9+16{\displaystyle {\sqrt {9+16}}} Add up squared coefficients: 25{\displaystyle {\sqrt {25}}}

Coefficients: (3, -4) Distance formula: 32+(−4)2{\displaystyle {\sqrt {3^{2}+(-4)^{2}}}} Square the coefficients: 9+16{\displaystyle {\sqrt {9+16}}} Add up squared coefficients: 25{\displaystyle {\sqrt {25}}} Take the square root to get your final answer: 5 |3−4i|=5{\displaystyle |3-4i|=5}

|1+6i|{\displaystyle |1+6i|} = √37 |2−i|{\displaystyle |2-i|} = √5 |6i−8|{\displaystyle |6i-8|} = 10